3D laser imaging techniques on UAVs

Detection and localization of collapsed buildings and trapped victims

INACHUS partners

Dr. Nicolas RIVIERE
ONERA – Optronics Department
Light Matter Interaction, Imaging and Detection Laser Systems Unit
2 av Edouard Belin – F31055 Toulouse – France

Phone : +33 (0) 562 252 624
E.mail : nicolas.riviere@onera.fr
Scope of the project
Scope of the project

- Project facts & Consortium

Technological and Methodological Solutions for Integrated Wide Area Situation Awareness and Survivor Localization to Support Search and Rescue Teams - FP7 European project n°607522

Follow us

© Property of Onera. Information of all kinds which may include commercial, financial or technical data cannot be used, reproduced or disclosed without its previous written agreement.

NORWAY
FINLAND
FRAUNHOFER EMI
SWeden
SBFF
©2018
GERMANY
ITC
CRISIS PLAN
USAR.NL
THE NETHERLANDS
UK
TELINT
FRANCE
ONERA
VALABRE
DIGINEXT
SPAIN
TEKNIKER
ITALY
ASI
GREECE
ICCS
µGEN
EXODUS
BYTE

20 partners from 10 countries
8 Research institutes
8 Industrial partners
4 End users

Budget: € 13 944 268
EU funding: € 9 885 037

48 months, starting January 2015

A project in collaboration with ONERA, The French Aerospace Lab and a grant from Europe
Scope of the project

- **Project background**

 Main idea - Fast rescue of disaster surviving victims
 Situation & awareness simulation during structural collapses including detection of survivors & survival spaces

 Crisis incidents result in difficult working conditions for Urban Search-and-Rescue crews (USaR). INACHUS aims to achieve a significant time reduction and increase efficiency in USaR operations.

 - USaR ISSUES
 - WORK SAFETY
 - DIFFICULT VICTIM LOCATION
 - QUICK RESCUE
 - LIMITED SITUATION AWARENESS

 - USaR NEEDS
 - SAVE TIME
 - INCREASE EFFICIENCY
Scope of the project

- **Project background**

 Main idea - Fast rescue of disaster surviving victims
 Situation & awareness simulation during structural collapses including detection of survivors & survival spaces

 Crisis incidents result in difficult working conditions for Urban Search-and-Rescue crews (USaR). INACHUS aims to achieve a significant time reduction and increase efficiency in USaR operations.

Simulation tools
For estimating locations of survival spaces

New sensors
EM, vision, chemical…

Snake robot
Robots can go where humans can’t

Decision and planning modules
For damage estimation (airborne and ground-based data)
Data analysis and 3D visualization
Wide area surveillance tools for monitoring of collapsed buildings
Wide area surveillance tools
for monitoring of collapsed buildings

- **Objectives**

 1. Provide a **wide-area** disaster scene assessment
 Based on integration of space borne information and Finite Element Method results, and population distribution mapping, for 3D modelling and USaR prioritization

 2. Provide **high resolution** and quality 3D digital surface models
 Coming from laser scanner and photogrammetry data on the most affected areas

 3. Perform an **exploitation** of these 3D data
 Relation with the library of collapsed building models using a semantic analysis or matching method

 4. Assess the **structural damage**
 To deliver maps of survival space and rescue path as inputs to the COP

- **Expected results**

 - New methods to refine priority areas
 Based on satellite data + actual pop. dynamics estimation

 - High resolution 3D digital surface/terrain models
 Measured on a disaster site

 - Probability map of survival space, maps of rescue paths and dasymetric population

 - New data processing and fusion methods
 3D mapping (UAV / ground meas. + passive / laser)

 - New semantic analysis methods
 3D damage assessment and SoTA process

 - New matching methods
 3D damage assessment and SoTA Process
Wide area surveillance tools for monitoring of collapsed buildings

- **3D surface model**

Wide-area surveillance tools for monitoring of collapsed buildings
1. Wide area in limited resolution (~1 m) from drones
2. Small scale in high resolution (<10 cm) from ground and drones
Wide area surveillance tools for monitoring of collapsed buildings

- **3D surface model**

Wide-area surveillance tools for monitoring of collapsed buildings
1. Wide area in limited resolution (~1 m) from drones
2. Small scale in high resolution (<10 cm) from ground and drones

- Up to the area of a **city** in limited resolution
- Compact drones, easy to deploy and operate (less than 1 hour)
- Available under **bad weather conditions** (rain, fog, haze, wind)
- Available **H24** (day and night vision)
- Classification of the typologies (building, road, tree, vegetation,..)
- Maps of rescue paths
- Classification maps of buildings with associated survival probabilities

10 x 10 km²
Wide area surveillance tools for monitoring of collapsed buildings

- 3D surface model

Wide-area surveillance tools for monitoring of collapsed buildings
1. Wide area in limited resolution (~ 1 m) from drones
2. Small scale in high resolution (< 10 cm) from ground and drones

- From Quarter to Building levels in high resolution
- Autonomous outdoor flight (light-weight drones <5kg)
- Data fusion from Terrestrial and Airborne measurements

✓ Precise 3D reconstruction for visual analysis of buildings by USaR Teams
✓ Increasing operator interpretation by 3D / visible data fusion (damage evaluation)
Experiments Results
Experiments & Results

- **Involved technologies**

How to achieve a significant time reduction related to Urban Search and Rescue phase?
How to provide wide-area situation awareness solutions for improved detection and localization of the trapped victims?

1. 3D Laser scanner from the ground
2. 3D Laser scanner from a drone / gyrocopter
3. 3D geometry from image analysis

- 3D point cloud (FWF) on wide area from gyrocopter platform
Experiments & Results

- **Experiments**

 Experiments to collect **3D data** with aerial / ground-based systems ⇒ Dense high-accuracy data
 3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter
 3D measurements in Ågesta, Lyon, Toulouse… Scenarios shared with ALL partners + End-Users

 Experiments in Lyon, France
 Real time display to the USaR team (video + 3D)
 Airborne and ground-based laser + photogrammetry data

Velodyne HDL32

- **Weight**: 2 kg
- **Size (height x diameter)**: 150 x 100 mm
- **Range**: 70 m
- **Accuracy**: 20 mm (at 25 m)
- **Meas. rate**: 700,000 points/sec

Vario Benzin characteristics

- **Maximum Take-Off Weight**: 18 kg
- **Main Rotor Diameter**: 1.78 m
- **Overall length**: 1.63 m
- **2-cycle engine**: 26 cc
- **Autonomy**: 45 min
Experiments & Results

- Experiments

Experiments to collect 3D data with aerial / ground-based systems ⇒ Dense high-accuracy data
3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter
3D measurements in Ågesta, Lyon, Toulouse… Scenarios shared with ALL partners + End-Users

Semantic data analysis, without damage model

Fused 3D point clouds + RGB camera

Semantic labelling of point clouds using deep learning (85%+ global accuracy), released in open-source for re-use and dissemination: https://github.com/aboulch/snapnet
Experiments & Results

- Experiments

Experiments to collect 3D data with aerial / ground-based systems ⇒ Dense high-accuracy data
3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter
3D measurements in Ågesta, Lyon, Toulouse... Scenarios shared with ALL partners + End-Users

Semantic data analysis, without damage model

Transfered SnapNet #1
Urban semantizer to detect buildings and terrain vegetation

SnapNet trained on urban classes

Semantic labelling of point clouds using deep learning (85%+ global accuracy), released in open-source for re-use and dissemination: https://github.com/aboulch/snapnet
Experiments & Results

- **Experiments**

 Experiments to collect **3D data** with aerial / ground-based systems ⇒ Dense high-accuracy data
 3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter
 3D measurements in Ågesta, Lyon, Toulouse… Scenarios shared with ALL partners + End-Users

Semantic data analysis, without damage model

Transfered SnapNet #2
Rubble predictor

SnapNet trained on intact/damaged (Montebello dataset annotated for rubble detection by ONERA)

Semantic labelling of point clouds using deep learning (85%+ global accuracy), released in open-source for re-use and dissemination: https://github.com/aboulch/snapnet
Experiments & Results

- Experiments

Experiments to collect **3D data** with aerial / ground-based systems ⇒ Dense high-accuracy data

3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter

3D measurements in Ågesta, Lyon, Toulouse… Scenarios shared with ALL partners + End-Users

Semantic data analysis, without damage model

Combined: Inachus tools for building + rubble 3D map with demolition estimate

Semantic labelling of point clouds using deep learning (85%+ global accuracy), released in open-source for re-use and dissemination: https://github.com/aboulch/snapnet
Experiments

Experiments to collect 3D data with aerial / ground-based systems ⇒ Dense high-accuracy data
3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter
3D measurements in Ågesta, Lyon, Toulouse… Scenarios shared with ALL partners + End-Users

Semantic labelling of point clouds using deep learning (85%+ global accuracy), released in open-source for re-use and dissemination: https://github.com/aboulch/snapnet

https://github.com/aboulch/snapnet
Experiments & Results

- **Experiments**

 Experiments to collect **3D data** with aerial / ground-based systems ⇒ Dense high-accuracy data
 3D laser cameras (3D TOF) integrated on helicopter UAV and gyrocopter
 3D measurements in Ågesta, Lyon, Toulouse… Scenarios shared with ALL partners + End-Users

 Semantic data analysis, with damage model

Airborne and ground-based laser data + photogrammetry data + Exploitation
Experiments & Results

- Simulations at ONERA including Physics

 Performance validation and simulation of the systems
 Numerical 3D data point clouds
 To test / define strategies of airborne observation considering both ethical issues and USaR requirements

MATLIS code for 3D Laser Scanner performance analysis
End-to-end / Physical model including optical properties of materials, turbulence effects, bad weather conditions…
Synthesis Perspectives
Wide area surveillance tools
for monitoring of collapsed buildings

- **Next steps for the project**

 To achieve a significant time reduction related to Urban Search and Rescue phase
 To provide wide-area situation awareness solutions for improved detection and localization of trapped victims

- **Expected results**

 New methods to refine priority areas
 High resolution 3D digital surface/terrain models
 Probability map of survival space, maps of rescue paths and dasymetric population
 New data processing and fusion methods
 New semantic analysis methods

Last pilot of the project

12 – 16 November 2018
at the French / Italian border
between the Alps and the French Riviera

Feel free to join us!

L’Aquila, Italy after several earthquakes